Low complexity differential geometric computations
نویسندگان
چکیده
In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can get very involved due to the underlying non-linearity associated with the space. As a result a complex task such as manifold sequence matching would require very large number of computations making it hard to use in practice. We believe that one can device smart approximation algorithms for several classes of such problems which take into account the geometry of the manifold and maintain the favorable properties of the exact approach. This problem has several applications in areas of human activity discovery and recognition, where several features and representations are naturally studied in a non-Euclidean setting. We propose a novel solution to the problem of indexing manifold-valued sequences by proposing an intrinsic approach to map sequences to a symbolic representation. This is shown to enable the deployment of fast and accurate algorithms for activity recognition, motif discovery, and anomaly detection. Toward this end, we present generalizations of key concepts of piece-wise aggregation and symbolic approximation for the case of non-Euclidean manifolds. Experiments show that one can replace expensive geodesic computations with much faster symbolic computations with little loss of accuracy in activity recognition and discovery applications. The proposed methods are ideally suited for real-time systems and resource constrained scenarios.
منابع مشابه
Polynomial evaluation and interpolation on special sets of points
We give complexity estimates for the problems of evaluation and interpolation on various polynomial bases. We focus on the particular cases when the sample points form an arithmetic or a geometric sequence, and we discuss applications, respectively to computations with linear differential operators and to polynomial matrix multiplication.
متن کاملSymplectic Geometric Algorithm for Quaternion Kinematical Differential Equation
Solving quaternion kinematical differential equations is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present symplectic geometric algorithms to deal with the quaternion kinematical differ...
متن کاملComplexity of geometric three-manifolds
We compute for all orientable irreducible geometric 3-manifolds certain complexity functions that approximate from above Matveev’s natural complexity, known to be equal to the minimal number of tetrahedra in a triangulation. We can show that the upper bounds on Matveev’s complexity implied by our computations are sharp for thousands of manifolds, and we conjecture they are for infinitely many, ...
متن کاملDifferential geometry and stochastic dynamics with deep learning numerics
In this paper, we demonstrate how deterministic and stochastic dynamics on manifolds, as well as differential geometric constructions can be implemented concisely and efficiently using modern computational frameworks that mix symbolic expressions with efficient numerical computations. In particular, we use the symbolic expression and automatic differentiation features of the python library Thea...
متن کاملAlgorithms and Methods in Differential Algebra
Founded by J. F. Ritt, Differential Algebra is a true part of Algebra so that constructive and algorithmic problems and methods appear in this field. In this talk, I do not intend to give an exhaustive survey of algorithmic aspects of Differential Algebra but I only propose some examples to give an insight of the state of knowledge in this domain. Some problems are known to have an effective so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012